Extensions 1→N→G→Q→1 with N=C8oD4 and Q=C22

Direct product G=NxQ with N=C8oD4 and Q=C22
dρLabelID
C22xC8oD464C2^2xC8oD4128,2303

Semidirect products G=N:Q with N=C8oD4 and Q=C22
extensionφ:Q→Out NdρLabelID
C8oD4:1C22 = M4(2).37D4φ: C22/C1C22 ⊆ Out C8oD4168+C8oD4:1C2^2128,1800
C8oD4:2C22 = D8:11D4φ: C22/C1C22 ⊆ Out C8oD4168+C8oD4:2C2^2128,2020
C8oD4:3C22 = D8.13D4φ: C22/C1C22 ⊆ Out C8oD4328-C8oD4:3C2^2128,2021
C8oD4:4C22 = D8oSD16φ: C22/C1C22 ⊆ Out C8oD4324C8oD4:4C2^2128,2022
C8oD4:5C22 = D8:6D4φ: C22/C1C22 ⊆ Out C8oD4164C8oD4:5C2^2128,2023
C8oD4:6C22 = D8oD8φ: C22/C1C22 ⊆ Out C8oD4164+C8oD4:6C2^2128,2024
C8oD4:7C22 = D8:C23φ: C22/C1C22 ⊆ Out C8oD4168+C8oD4:7C2^2128,2317
C8oD4:8C22 = C4.C25φ: C22/C1C22 ⊆ Out C8oD4328-C8oD4:8C2^2128,2318
C8oD4:9C22 = M4(2).51D4φ: C22/C1C22 ⊆ Out C8oD4164C8oD4:9C2^2128,1688
C8oD4:10C22 = M4(2)oD8φ: C22/C1C22 ⊆ Out C8oD4324C8oD4:10C2^2128,1689
C8oD4:11C22 = C2xD4.3D4φ: C22/C2C2 ⊆ Out C8oD432C8oD4:11C2^2128,1796
C8oD4:12C22 = C2xD4.4D4φ: C22/C2C2 ⊆ Out C8oD432C8oD4:12C2^2128,1797
C8oD4:13C22 = C2xD4oD8φ: C22/C2C2 ⊆ Out C8oD432C8oD4:13C2^2128,2313
C8oD4:14C22 = C2xD4oSD16φ: C22/C2C2 ⊆ Out C8oD432C8oD4:14C2^2128,2314
C8oD4:15C22 = C2xQ8oD8φ: C22/C2C2 ⊆ Out C8oD464C8oD4:15C2^2128,2315
C8oD4:16C22 = C8.C24φ: C22/C2C2 ⊆ Out C8oD4324C8oD4:16C2^2128,2316
C8oD4:17C22 = C2xC8oD8φ: C22/C2C2 ⊆ Out C8oD432C8oD4:17C2^2128,1685
C8oD4:18C22 = C2xC8.26D4φ: C22/C2C2 ⊆ Out C8oD432C8oD4:18C2^2128,1686
C8oD4:19C22 = C42.283C23φ: C22/C2C2 ⊆ Out C8oD4324C8oD4:19C2^2128,1687
C8oD4:20C22 = C2xQ8oM4(2)φ: C22/C2C2 ⊆ Out C8oD432C8oD4:20C2^2128,2304
C8oD4:21C22 = C4.22C25φ: C22/C2C2 ⊆ Out C8oD4324C8oD4:21C2^2128,2305

Non-split extensions G=N.Q with N=C8oD4 and Q=C22
extensionφ:Q→Out NdρLabelID
C8oD4.1C22 = Q16.10D4φ: C22/C1C22 ⊆ Out C8oD4324+C8oD4.1C2^2128,924
C8oD4.2C22 = Q16.D4φ: C22/C1C22 ⊆ Out C8oD4324C8oD4.2C2^2128,925
C8oD4.3C22 = D8.3D4φ: C22/C1C22 ⊆ Out C8oD4324C8oD4.3C2^2128,926
C8oD4.4C22 = D8.12D4φ: C22/C1C22 ⊆ Out C8oD4644-C8oD4.4C2^2128,927
C8oD4.5C22 = M4(2).38D4φ: C22/C1C22 ⊆ Out C8oD4328-C8oD4.5C2^2128,1801
C8oD4.6C22 = D8oQ16φ: C22/C1C22 ⊆ Out C8oD4324-C8oD4.6C2^2128,2025
C8oD4.7C22 = D4.3D8φ: C22/C2C2 ⊆ Out C8oD4324+C8oD4.7C2^2128,953
C8oD4.8C22 = D4.4D8φ: C22/C2C2 ⊆ Out C8oD4644-C8oD4.8C2^2128,954
C8oD4.9C22 = D4.5D8φ: C22/C2C2 ⊆ Out C8oD4324C8oD4.9C2^2128,955
C8oD4.10C22 = C2xD4.5D4φ: C22/C2C2 ⊆ Out C8oD464C8oD4.10C2^2128,1798
C8oD4.11C22 = M4(2).10C23φ: C22/C2C2 ⊆ Out C8oD4324C8oD4.11C2^2128,1799
C8oD4.12C22 = D4oD16φ: C22/C2C2 ⊆ Out C8oD4324+C8oD4.12C2^2128,2147
C8oD4.13C22 = D4oSD32φ: C22/C2C2 ⊆ Out C8oD4324C8oD4.13C2^2128,2148
C8oD4.14C22 = Q8oD16φ: C22/C2C2 ⊆ Out C8oD4644-C8oD4.14C2^2128,2149
C8oD4.15C22 = C2xD4.C8φ: C22/C2C2 ⊆ Out C8oD464C8oD4.15C2^2128,848
C8oD4.16C22 = M5(2):12C22φ: C22/C2C2 ⊆ Out C8oD4324C8oD4.16C2^2128,849
C8oD4.17C22 = C16oD8φ: C22/C2C2 ⊆ Out C8oD4322C8oD4.17C2^2128,902
C8oD4.18C22 = D8.C8φ: C22/C2C2 ⊆ Out C8oD4324C8oD4.18C2^2128,903
C8oD4.19C22 = C2xD4oC16φ: trivial image64C8oD4.19C2^2128,2138
C8oD4.20C22 = Q8oM5(2)φ: trivial image324C8oD4.20C2^2128,2139

׿
x
:
Z
F
o
wr
Q
<